Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA podría mejorar precisión diagnóstica de la DCE-MRI de mama

Por el equipo editorial de MedImaging en español
Actualizado el 12 Oct 2022

La detección temprana es clave para mejorar los resultados del cáncer de mama. La resonancia magnética dinámica mejorada con contraste (DCE-MRI) tiene una alta sensibilidad para detectar el cáncer de mama y, a veces, se usa para mujeres con mayor riesgo de cáncer de mama, pero a menudo conduce a biopsias y análisis de pacientes innecesarios. Ahora, un nuevo estudio ha demostrado que un sistema de aprendizaje profundo (DL) podría mejorar la precisión diagnóstica de la DCE-MRI del tejido mamario para detectar el cáncer de mama.

Para el estudio, los investigadores de la Escuela de Medicina Grossman de la Universidad de Nueva York (Nueva York, NY, EUA) usaron un sistema de DL para mejorar la precisión general del diagnóstico de cáncer de mama y personalizar el manejo de las pacientes sometidas a DCE-MRI. En el conjunto de pruebas internas (n = 3.936 exámenes), el sistema logró un área bajo la curva característica operativa del receptor (AUROC) de 0,92 (IC del 95 %: 0,92 a 0,93). En un estudio retrospectivo de lectores, no hubo diferencias estadísticamente significativas (P = 0,19) entre cinco radiólogos de mama certificados por la junta y el sistema de DL (media de ΔAUROC, +0,04 a favor del sistema de DL). El rendimiento de los radiólogos mejoró cuando sus predicciones se promediaron con las predicciones de DL [media ΔAUPRC (área bajo la curva de recuperación de precisión), +0.07].

Además, los investigadores demostraron la capacidad de generalización del sistema de DL usando múltiples conjuntos de datos de Polonia y los EUA. Un estudio de lectura adicional en un conjunto de datos polaco mostró que el sistema de DL era tan sólido para el cambio de distribución como los radiólogos. En el análisis de subgrupos, los investigadores observaron resultados uniformes en diferentes subtipos de cáncer y datos demográficos de los pacientes. Usando el análisis de la curva de decisión, los investigadores demostraron que el sistema de DL puede reducir las biopsias innecesarias en el rango de umbrales de riesgo clínicamente relevantes. Esto llevaría a evitar biopsias con resultados benignos hasta en un 20% de todos los pacientes con lesiones BI-RADS de categoría 4. Por último, los investigadores realizaron un análisis de errores, investigando situaciones en las que las predicciones de DL eran en su mayoría incorrectas. Este trabajo exploratorio crea una base para la implementación y el análisis prospectivo de modelos basados en DL para resonancia magnética de mama.

Enlaces relacionados:
Escuela de Medicina Grossman de la Universidad de Nueva York

Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Miembro Oro
Ultrasound System
FUTUS LE
Afterloader For Brachytherapy
Flexitron
Mobile Radiographic System
XJET
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Radcal

Canales

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

Imaginología General

ver canal
Imagen: El modelo AI ingresa y analiza una imagen de la tomografía de emisión de positrones (PET) (Fotografía cortesía de la Universidad de Chalmers)

Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC

El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.