Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de RM con IA clasifica los tumores intracraneales comunes

Por el equipo editorial de MedImaging en español
Actualizado el 15 Sep 2021
Un estudio nuevo afirma que un modelo 3D de inteligencia artificial (IA) es capaz de clasificar un tumor cerebral como uno de los seis tipos comunes a partir de un solo examen de resonancia magnética (RM).

Para desarrollar el algoritmo GradCAM, investigadores de la Universidad de Washington (WUSTL; St. Louis, MO, EUA), utilizaron 2.105 exámenes de resonancia magnética ponderadas en T1 de cuatro conjuntos de datos disponibles públicamente, divididos en capacitación (1.396), interna (361) y conjuntos de datos externos (348). Se entrenó una red neuronal convolucional (CNN) para discriminar entre exámenes sanos y aquellos con tumores, clasificados por tipo (glioma de alto grado, glioma de bajo grado, metástasis cerebrales, meningioma, adenoma hipofisario y neuroma acústico). A continuación, se evaluó el desempeño del modelo y se trazaron mapas de características para visualizar la atención de la red.

Los resultados de las pruebas internas mostraron que GradCAM logró una exactitud del 93,35% en siete clases de imágenes (una clase saludable y seis clases de tumores). Las sensibilidades variaron del 91% al 100% y el valor predictivo positivo (VPP) varió del 85% al 100%. El valor predictivo negativo (VPN) osciló entre el 98% y el 100% en todas las clases. La atención de la red se superpuso con las áreas tumorales para todos los tipos de tumores. Para el conjunto de datos de la prueba externa, que incluyó solo dos tipos de tumores (glioma de alto grado y glioma de bajo grado), GradCAM tuvo una exactitud del 91,95%. El estudio fue publicado el 11 de agosto de 2021 en la revista Radiology: Artificial Intelligence.

“Estos resultados sugieren que el aprendizaje profundo es un método prometedor para la clasificación y evaluación automatizadas de tumores cerebrales. El modelo logró una alta exactitud en un conjunto de datos heterogéneo y mostró excelentes capacidades de generalización en datos de prueba invisibles”, dijo el autor principal, Satrajit Chakrabarty, MSc, del departamento de ingeniería eléctrica y de sistemas. “Esta red es el primer paso hacia el desarrollo de un flujo de trabajo de radiología aumentado con inteligencia artificial que puede respaldar la interpretación de imágenes al proporcionar información cuantitativa y estadísticas”.

El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático de IA basados en representaciones de datos de aprendizaje, a diferencia de los algoritmos específicos de tareas. Se trata de algoritmos de CNN que utilizan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción, conversión y transformación de características, y cada capa sucesiva utiliza la salida de la capa anterior como entrada para formar una representación jerárquica.

Enlace relacionado:
Universidad de Washington


Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Miembro Oro
Ultrasound System
FUTUS LE
Mobile Radiographic System
XJET
Radiology System
Riviera SPV AT
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Radcal

Canales

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

Imaginología General

ver canal
Imagen: El modelo AI ingresa y analiza una imagen de la tomografía de emisión de positrones (PET) (Fotografía cortesía de la Universidad de Chalmers)

Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC

El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.