Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Software de detección de lesiones basado en IA detecta nódulos pulmonares incidentales en radiografías de tórax

Por el equipo editorial de MedImaging en español
Actualizado el 06 Dec 2023

En el campo de la radiología, la inteligencia artificial (IA) ha logrado avances significativos, particularmente en el desarrollo de software de detección de lesiones basado en IA para radiografías de tórax. Estos avances han demostrado ser eficaces en entornos del mundo real, incluidos los departamentos de emergencia, exámenes de detección de cáncer de pulmón y clínicas respiratorias. Sin embargo, se ha explorado menos el impacto de la IA en la identificación de nódulos pulmonares inesperados en pacientes que inicialmente no presentan problemas relacionados con el pecho. Ahora, un nuevo estudio ha demostrado que un software de detección de lesiones basado en IA puede ser fundamental en la práctica médica diaria, especialmente para detectar nódulos pulmonares incidentales clínicamente significativos en las radiografías de tórax.

Un grupo de investigadores de la Facultad de Medicina de la Universidad de Yonsei (Gyeonggi-do, Corea del Sur) utilizó Insight CXR, v3 de Lunit (Seúl, Corea del Sur) para evaluar con qué frecuencia se detectaban inesperadamente nódulos pulmonares clínicamente significativos en las radiografías de tórax y si los hallazgos coexistentes pueden ayudar en el diagnóstico diferencial. Este software está destinado a ayudar en la interpretación de radiografías de tórax posteroanterior y anteroposterior. Es capaz de detectar diversas lesiones como nódulos, neumotórax, consolidación, atelectasias, fibrosis, cardiomegalia, derrame pleural y neumoperitoneo. Cuando a un paciente se le realiza una radiografía de tórax, el software procesa automáticamente la imagen y agrega un archivo secundario a la imagen original en el Sistema de comunicación y archivo de imágenes (PACS) del hospital. Luego, los médicos pueden consultar el análisis de IA, que se presenta con un mapa de contorno, abreviaciones y una puntuación de anomalía.

En su estudio, el equipo revisó los resultados de imágenes de 14.563 pacientes a quienes se les realizaron radiografías iniciales de tórax en clínicas ambulatorias. Tres radiólogos clasificaron los nódulos en cuatro categorías: malignidad (grupo A), inflamación activa o infección que requiere tratamiento (grupo B), secuelas postinflamatorias (grupo C) y otras afecciones (grupo D). El software identificó lesiones cuando su puntuación de anormalidad era superior al 15 %. Los hallazgos revelaron que el software de IA detectó inesperadamente nódulos pulmonares en 152 pacientes (1 %). De estos, 72 pacientes fueron excluidos por falta de imágenes de seguimiento y siete fueron excluidos por no recibir un diagnóstico clínico concluyente.

En el análisis final de los 73 pacientes restantes, la tasa de falsos positivos fue del 30,1 %. El desglose mostró que el 11 % tenía malignidad, el 6,9 % tenía inflamación activa, el 49,3 % tenía secuelas postinflamatorias y el 2,7 % entraba en otras categorías. Esto sugirió que alrededor del 20,6 % de los nódulos pulmonares incidentales en los grupos A, B y D requirieron evaluación o tratamiento adicional. Los investigadores reconocieron que su estudio no proporcionó datos completos sobre la detección y el tratamiento de nódulos pulmonares cuando utiliza software basado en IA. Esto se debió en parte a que los médicos de su hospital tenían la discreción de consultar los resultados de la IA a su conveniencia, lo que dificultaba determinar la influencia exacta de la IA en la toma de decisiones clínicas. Sin embargo, el equipo planea investigar más a fondo estos aspectos en futuras investigaciones.

"Nuestros resultados mostraron que la IA detectó inesperadamente nódulos pulmonares en aproximadamente el 1 % de las [radiografías de tórax] iniciales, y aproximadamente el 70 % de estos casos fueron nódulos verdaderamente positivos, mientras que el 20,5 % requirió tratamiento clínico", señaló la autora principal Shin Hye Hwang, MD.

Enlaces relacionados:
Facultad de Medicina de la Universidad de Yonsei
Lunit

Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Miembro Oro
Ultrasound System
FUTUS LE
Miembro Plata
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
X-Ray System
Leonardo DR mini III
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Radcal

Canales

RM

ver canal
Imagen: El MRgFUS puede tratar con éxito el cáncer de próstata para aquellos en riesgo intermedio (Fotografía cortesía de 123RF)

Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata

Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

Imaginología General

ver canal
Imagen: El modelo AI ingresa y analiza una imagen de la tomografía de emisión de positrones (PET) (Fotografía cortesía de la Universidad de Chalmers)

Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC

El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.