Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de IA de alta precisión puede mejorar rendimiento del análisis de rayos X de tórax de radiólogos

Por el equipo editorial de MedImaging en español
Actualizado el 11 Jul 2023

Un estudio reciente presenta pruebas convincentes de que un modelo de IA de alta precisión puede mejorar significativamente la capacidad de los radiólogos para analizar las radiografías de tórax. El estudio revela que solo las soluciones médicas de IA con alta precisión diagnóstica pueden mejorar notablemente el rendimiento diagnóstico de los radiólogos.

Lunit (Seúl, Corea) ha compartido los resultados de un estudio que investiga el impacto de la precisión de las soluciones médicas de inteligencia artificial en las decisiones diagnósticas de los radiólogos. La investigación involucró a un grupo de 30 médicos, compuesto por 20 radiólogos certificados con 5 a 18 años de experiencia y 10 residentes de radiología con 2 a 3 años de capacitación. El grupo evaluó un total de 120 radiografías de tórax recolectadas retrospectivamente, la mitad de pacientes con cáncer de pulmón y el resto sin anomalías. En la sesión inicial, los lectores se dividieron en dos grupos y cada grupo analizó 120 radiografías de tórax sin la ayuda de IA. En la siguiente sesión, volvieron a examinar las imágenes utilizando un modelo de IA de alta o baja precisión.

Para el estudio, los investigadores utilizaron Lunit INSIGHT CXR, una solución de inteligencia artificial disponible comercialmente para el análisis de rayos X de tórax. El modelo de baja precisión, por el contrario, se entrenó utilizando solo el 10 % de los datos utilizados para Lunit INSIGHT CXR. El AUROC (área bajo la curva característica operativa del receptor), una métrica estándar para la precisión del diagnóstico, para Lunit INSIGHT CXR fue de 0,88, mientras que el modelo de IA de baja precisión alcanzó solo 0,77. Los hallazgos del estudio mostraron que el uso del modelo de IA de alta precisión, Lunit INSIGHT CXR, condujo a una mejora significativa en el desempeño de los radiólogos. El AUROC mejoró notablemente de 0,77 a 0,82 cuando se utilizó el modelo de IA de alta precisión.

Por otro lado, el grupo que utilizó el modelo de IA de baja precisión no experimentó ninguna mejora en el desempeño, y el AUROC se mantuvo en 0,75. Curiosamente, el grupo que utilizó el modelo de IA de alta precisión mostró una mayor inclinación a aceptar sugerencias de IA. Estuvieron de acuerdo con el 67 % de las recomendaciones de IA que estaban en conflicto con sus interpretaciones iniciales, en comparación con una tasa de aceptación del 59 % del grupo que utilizó el modelo de IA de baja precisión. Además, el estudio concluyó que los factores individuales, como la experiencia de los radiólogos, su experiencia previa con la IA o las actitudes hacia la IA, tuvieron un efecto mínimo en su desempeño diagnóstico en la segunda sesión. En cambio, la precisión del modelo de IA y la precisión del diagnóstico inicial de los radiólogos se identificaron como las principales influencias en los resultados del diagnóstico final. Estos resultados subrayan la importancia del desempeño del modelo de IA cuando los radiólogos lo utilizan como lector secundario. También muestran que dicho soporte de IA puede aumentar la receptividad de los radiólogos a las sugerencias de IA, lo que lleva a diagnósticos más precisos a largo plazo.

"El estudio respalda que, independientemente de las características individuales de los radiólogos, la utilización de IA de alto rendimiento mejora significativamente la precisión disgnóstica y fomenta una mayor aceptación de la IA en las prácticas médicas", dijo Brandon Suh, director ejecutivo de Lunit. "En Lunit, estamos comprometidos con el desarrollo de soluciones impulsadas por IA que no solo mejoren los resultados de los pacientes, sino que también aumenten la experiencia de los profesionales de la salud. Esta publicación es un testimonio de nuestra dedicación para avanzar en el campo del diagnóstico del cáncer a través de tecnología de punta".

Enlaces relacionados:
Lunit  

Miembro Oro
Ultrasound System
FUTUS LE
Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Pencil Beam System
inus D DXA
Double Sided Apron
Maxima
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Radcal

Canales

RM

ver canal
Imagen: El MRgFUS puede tratar con éxito el cáncer de próstata para aquellos en riesgo intermedio (Fotografía cortesía de 123RF)

Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata

Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

Imaginología General

ver canal
Imagen: El modelo AI ingresa y analiza una imagen de la tomografía de emisión de positrones (PET) (Fotografía cortesía de la Universidad de Chalmers)

Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC

El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.