Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA para imágenes puede aliviar las limitaciones del flujo de trabajo radiográfico de emergencia

Por el equipo editorial de MedImaging en español
Actualizado el 29 Mar 2023
Print article
Imagen: Un nuevo estudio respalda la viabilidad del flujo de trabajo basado en la IA a tiempo completo en los departamentos de emergencia (Fotografía cortesía de Pexels)
Imagen: Un nuevo estudio respalda la viabilidad del flujo de trabajo basado en la IA a tiempo completo en los departamentos de emergencia (Fotografía cortesía de Pexels)

Durante las últimas décadas, los departamentos de emergencia (DE) de todo el mundo han experimentado una mayor presión en el flujo de trabajo y un aumento correspondiente en la demanda de imágenes médicas las 24 horas del día, los 7 días de la semana. Sin embargo, la mayoría de los departamentos de radiología luchan por proporcionar recursos para una cobertura 24 horas al día, 7 días a la semana. Como resultado, los médicos de urgencias deben interpretar los exámenes radiográficos antes de que esté disponible un informe radiológico, lo que crea nuevos desafíos organizacionales para garantizar la precisión del diagnóstico y un tiempo de respuesta rápido. La inteligencia artificial (IA), específicamente la aplicación del aprendizaje profundo en imágenes radiológicas, se ha convertido en una solución potencial para mejorar el flujo de trabajo del departamento de emergencias. La mayoría de las soluciones comerciales de IA se centran en la clasificación y el diagnóstico de radiografías simples de tórax o musculoesqueléticas (ME). Varios estudios realizados en entornos de salas de urgencias han demostrado un mejor rendimiento del diagnóstico por parte de los médicos de urgencias y/o residentes de radiología para detectar fracturas esqueléticas apendiculares o anomalías torácicas. Sin embargo, el impacto de estas soluciones de IA en todo el flujo de trabajo de emergencia no está claro, ya que se concentran en hallazgos de imágenes individuales, partes del cuerpo o grupos de edad.

Por consiguiente, los investigadores del Hospital General de Valenciennes (Valenciennes, Francia) realizaron un estudio para evaluar la eficacia de una solución comercial basada en el aprendizaje profundo para la clasificación de los flujos de trabajo de emergencias pediátricas y de adultos, específicamente mediante la detección de hallazgos radiográficos ME y de tórax. Además, el estudio tuvo como objetivo determinar su impacto en las discrepancias entre los médicos de emergencia y los radiólogos. La muestra estuvo compuesta por 1.772 casos de pacientes a los que se les realizó radiografías de emergencia de cualquier parte del cuerpo, excepto columna, cráneo y abdomen. Entre ellos, 172 casos (9,7 % de la muestra) tenían discrepancias entre las lecturas iniciales de los médicos de urgencias y las lecturas finales del departamento de radiología. Un radiólogo senior especializado en estructuras ME revisó y adjudicó estos casos, con acceso a todos los registros clínicos relevantes.

El equipo utilizó software de IA disponible comercialmente para clasificar a los pacientes en función de los rayos X y evaluar su desempeño en el manejo de casos con lecturas discrepantes. Los resultados mostraron que el sistema de IA tenía un nivel de sensibilidad comparable al de los médicos de urgencias y logró una tasa de precisión del 90,1 % en los 172 casos que habían sido mal diagnosticados por los mismos lectores. Los investigadores notaron que el modelo de IA probado en este estudio funcionó de manera similar a los utilizados en investigaciones anteriores, pero su estudio puede haber sido el primero en combinar radiografías ME y de tórax. Esta combinación permitió cubrir un rango más amplio de casos en el flujo de trabajo radiográfico a pesar de excluir las imágenes de columna, cráneo y abdomen. Además, el rendimiento de la IA no varió significativamente entre la edad y los subgrupos de partes del cuerpo, lo cual es crucial para su uso generalizado en el entorno clínico.

Enlaces relacionados:
Hospital General de Valenciennes  

Miembro Oro
Ultrasound System
FUTUS LE
Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Portable DR Flat Panel Detector
VIVIX-S 1012N
X-Ray Protective Head Cap
RA611 & RA612

Print article
Radcal

Canales

RM

ver canal
Imagen: El MRgFUS puede tratar con éxito el cáncer de próstata para aquellos en riesgo intermedio (Fotografía cortesía de 123RF)

Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata

Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

Imaginología General

ver canal
Imagen: El modelo AI ingresa y analiza una imagen de la tomografía de emisión de positrones (PET) (Fotografía cortesía de la Universidad de Chalmers)

Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC

El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.