Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo de IA supera a los médicos de emergencia en detección de fracturas en radiografías

Por el equipo editorial de MedImaging en español
Actualizado el 17 Mar 2023

El campo del diagnóstico por imágenes ha experimentado un progreso notable en la aplicación de la inteligencia artificial (IA), en particular en la identificación de fracturas en radiografías convencionales. A pesar de los notables avances, existen investigaciones limitadas sobre la detección de fracturas en la población pediátrica, dadas sus diferencias anatómicas únicas y los cambios relacionados con la edad. La falla en la identificación de fracturas en los niños puede tener serias implicaciones en su crecimiento y desarrollo. Ahora, un nuevo estudio sugiere que los algoritmos de aprendizaje profundo pueden ayudar en la detección de fracturas en niños.

Investigadores del Centro Médico de la Universidad de Caen (Caen, Francia) llevaron a cabo un estudio para evaluar la eficacia de un algoritmo de IA, basado en redes neuronales profundas, para identificar fracturas apendiculares traumáticas en una población pediátrica. El objetivo del estudio fue comparar la sensibilidad, la especificidad, el valor predictivo positivo y el valor predictivo negativo de varios lectores y el algoritmo de IA. El análisis retrospectivo involucró cerca de 900 pacientes menores de 18 años, que se sometieron a imágenes de trauma que no amenazaban la vida. Los especialistas en imagen analizaron retrospectivamente radiografías del hombro, brazo, codo, antebrazo, muñeca, mano, pierna, rodilla, tobillo y pie para el estudio.

Cuando se trataba de identificar fracturas, el algoritmo de IA superó a los médicos de urgencias, pero no pudo superar a los radiólogos experimentados. El algoritmo predijo con éxito 174 de 182 fracturas con una puntuación de sensibilidad del 95,6 % y una especificidad del 91,6 %, en comparación con una puntuación de sensibilidad del 98,35 % para radiólogos pediátricos y del 95,05 % para residentes senior. Los médicos de emergencia mostraron una puntuación de sensibilidad de solo el 81,87 % y los residentes junior alcanzaron el 90,1 %. Además, el algoritmo de IA también detectó tres fracturas (o el 1,6 %) que inicialmente no fueron detectadas por un radiólogo pediátrico.

"La falla en el diagnóstico temprano de fracturas en los niños puede tener graves consecuencias para el crecimiento", dijo el autor principal Idriss Gasmi, del Departamento de Radiología del Centro Médico de la Universidad de Caen en Francia. “Este estudio sugiere que los algoritmos de aprendizaje profundo pueden ser útiles para mejorar la detección de fracturas en niños”.

Enlaces relacionados:
Centro Médico de la Universidad de Caen  

Miembro Oro
Ultrasound System
FUTUS LE
Miembro Oro
Electrode Solution and Skin Prep
Signaspray
X-Ray System
Leonardo DR mini III
Mammography Diagnostic Station
Mammo Module
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Radcal

Canales

RM

ver canal
Imagen: El MRgFUS puede tratar con éxito el cáncer de próstata para aquellos en riesgo intermedio (Fotografía cortesía de 123RF)

Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata

Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

Imaginología General

ver canal
Imagen: El modelo AI ingresa y analiza una imagen de la tomografía de emisión de positrones (PET) (Fotografía cortesía de la Universidad de Chalmers)

Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC

El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.