Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de IA para imágenes PET determina respuesta del paciente a tratamientos de tumores cerebrales

Por el equipo editorial de MedImaging en español
Actualizado el 24 Aug 2023

La evaluación de los cambios en el volumen metabólico tumoral (VMT) mediante exploraciones PET utilizando radiotrazadores específicos como la fluoroetil tirosina (FET) F-18 juega un papel vital en la evaluación de la respuesta al tratamiento en pacientes con tumores cerebrales. Convencionalmente, el VMT se determina a través procesos manuales o semiautomáticos, que no sólo son lentos sino que también pueden variar dependiendo del médico que realiza la tarea. Ahora, un nuevo modelo de IA para imágenes PET podría ayudar enormemente a los médicos a evaluar cómo responden los pacientes a los tratamientos de tumores cerebrales.

Investigadores del Hospital Universitario de Aquisgrán (Aquisgrán, Alemania) demostraron que un modelo de IA basado en aprendizaje profundo puede automatizar la segmentación del VMT en imágenes PET cerebrales, eliminando potencialmente la necesidad de que los médicos humanos preprocesen estas imágenes. El objetivo de su estudio fue crear un método para la segmentación automatizada del VMT y evaluar su eficacia para medir las respuestas al tratamiento en pacientes con glioma. La investigación incluyó una colección de 699 exploraciones FET-PET F-18 de 555 pacientes con tumores cerebrales, obtenidas bien en el momento del diagnóstico inicial o durante visitas de seguimiento posteriores. Médicos experimentados en medicina nuclear primero segmentaron el VMT en estas imágenes, abarcando lesiones con niveles variables de captación del radiotrazador FET F-18.

Luego, el equipo utilizó 476 de estas imágenes para entrenar una red neuronal de IA, denominada "no new U-Net", para realizar la segmentación de VMT. Para evaluar la precisión del modelo, lo aplicaron a un conjunto de datos de imágenes que constaba de 223 exploraciones de 156 pacientes diferentes. De las 205 lesiones que mostraron mayor captación de FET F-18 en este conjunto de datos, el modelo identificó correctamente 189. Curiosamente, el modelo no identificó erróneamente ninguna región anatómica con una mayor captación normal del radiotrazador FET F-18, como en el seno sagital superior, como tumores. El rendimiento del modelo fue bastante notable, logrando una puntuación F1 media del 92 %, una sensibilidad del 93 % y un valor predictivo positivo del 95 % en la detección de lesiones. Una ventaja importante de este modelo es su capacidad para automatizar completamente la segmentación 3D utilizando un solo escaneo FET-PET F-18. Además, puede realizar esta tarea en menos de dos minutos utilizando una unidad de procesamiento de gráficos estándar, sin necesidad de ningún procesamiento previo.

"El hallazgo principal de nuestro estudio es que nuestra red neuronal basada en aprendizaje profundo permite una detección fiable y totalmente automatizada y una segmentación 3D de tumores cerebrales investigados por FET-PET F-18", señalaron los investigadores. "Este hallazgo resalta el valor de la red para la mejora y automatización de la toma de decisiones clínicas basada en la evaluación volumétrica de PET de aminoácidos".

Enlaces relacionados:
Hospital Universitario de Aquisgrán  

Miembro Oro
Ultrasound System
FUTUS LE
Miembro Oro
Electrode Solution and Skin Prep
Signaspray
3D Mammography Software
ProFound AI
Digital X-Ray Detector Panel
Acuity G4
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Radcal

Canales

RM

ver canal
Imagen: El MRgFUS puede tratar con éxito el cáncer de próstata para aquellos en riesgo intermedio (Fotografía cortesía de 123RF)

Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata

Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Imaginología General

ver canal
Imagen: El modelo AI ingresa y analiza una imagen de la tomografía de emisión de positrones (PET) (Fotografía cortesía de la Universidad de Chalmers)

Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC

El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.