Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo de aprendizaje automático diagnostica el cáncer antes y con exactitud

Por el equipo editorial de MedImaging en español
Actualizado el 03 Sep 2019
Un equipo de investigadores de la Universidad del Sur de California (Los Ángeles, CA, EUA) utilizó imágenes sintéticas para entrenar un algoritmo de aprendizaje automático que puede ayudar a detectar el cáncer de mama de manera más rápida y correcta. Los investigadores primero crearon modelos basados en la física que mostraban niveles variables de propiedades clave y luego usaron miles de entradas de datos derivados de esos modelos para entrenar el algoritmo de aprendizaje automático. Este tipo de técnicas se vuelven importantes en situaciones donde los datos son escasos, como en el caso de las imágenes médicas.

Los investigadores utilizaron unas 12.000 imágenes sintéticas para entrenar el algoritmo de aprendizaje automático. Al proporcionar suficientes ejemplos, el algoritmo puede obtener diferentes características inherentes a un tumor benigno versus un tumor maligno y hacer la determinación correcta. Después de lograr una exactitud de clasificación de casi el 100% en otras imágenes sintéticas, los investigadores probaron el algoritmo en imágenes del mundo real para determinar su exactitud en proporcionar un diagnóstico y midieron los resultados contra los diagnósticos confirmados por biopsia asociados con esas imágenes. El algoritmo de aprendizaje automático logró una tasa de exactitud de aproximadamente el 80% y ahora se refina aún más mediante el uso de más imágenes del mundo real como entradas.

Con base en los principios utilizados para entrenar el algoritmo de aprendizaje automático para el diagnóstico de cáncer de mama, los investigadores ahora buscan entrenar el algoritmo para diagnosticar mejor el cáncer renal a través de imágenes de TC con contraste. Los investigadores creen que es poco probable que los algoritmos de aprendizaje automático reemplacen el papel de un radiólogo en la determinación del diagnóstico, pero sí podrán servir como una herramienta para guiar a los radiólogos a llegar a conclusiones más exactas.

“El consenso general es que estos tipos de algoritmos tienen un papel importante que desempeñar, incluso de los profesionales de la imagenología a los que impactará más. Sin embargo, estos algoritmos serán más útiles cuando no sirven como cajas negras”, dijo Assad Oberai, profesor de Hughes en el Departamento de Ingeniería Aeroespacial y Mecánica de la Escuela de Ingeniería Viterbi de la USC. “¿Qué fue lo que vio que lo llevó a la conclusión final? El algoritmo debe ser explicable para que funcione según lo previsto”.

Enlace relacionado:
Universidad del Sur de California


Miembro Oro
Ultrasound System
FUTUS LE
Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Mammography Diagnostic Station
Mammo Module
PACS Workstation
PaxeraView PRO
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Radcal

Canales

RM

ver canal
Imagen: El MRgFUS puede tratar con éxito el cáncer de próstata para aquellos en riesgo intermedio (Fotografía cortesía de 123RF)

Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata

Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

Imaginología General

ver canal
Imagen: El modelo AI ingresa y analiza una imagen de la tomografía de emisión de positrones (PET) (Fotografía cortesía de la Universidad de Chalmers)

Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC

El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.