Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un algoritmo de IA detecta el cáncer de mama en las imágenes de resonancia magnética

Por el equipo editorial de MedImaging en español
Actualizado el 24 Apr 2019
Un equipo de investigadores del Centro de Cáncer Memorial Sloan Kettering (Nueva York, NY, EUA) capacitó a un algoritmo inteligente en una red neuronal para reconocer la aparición del cáncer de mama en las imágenes de resonancia magnética. Según los investigadores, el algoritmo utiliza el aprendizaje profundo, una forma de aprendizaje automático, que es un tipo de inteligencia artificial (IA), para identificar tumores en las imágenes de RM de mama y podría ahorrar tiempo sin comprometer la exactitud.

Los investigadores utilizaron una red neuronal para clasificar segmentos de las imágenes de RM y extraer las características. El algoritmo aprendió a hacer esto por sí solo y el uso del aprendizaje profundo eliminó la necesidad de decirle explícitamente a la computadora qué es lo que debía buscar. Los investigadores probaron el algoritmo procesando imágenes de RM de 277 mujeres, clasificando segmentos dentro de estas imágenes como mostrando o no mostrando tumor. El algoritmo logró una exactitud del 93% en un conjunto de pruebas, mientras que la sensibilidad y especificidad para la detección de tumores fueron del 94% y 92%, respectivamente.

Los investigadores creen que el algoritmo, si está integrado en el flujo de trabajo clínico, tiene el potencial de mejorar la eficiencia de los radiólogos. También podría ahorrar tiempo durante las juntas de tumores al desplazarse automáticamente a los cortes de RM de la mama que muestran lesiones de cáncer, eliminando así el tiempo que de lo contrario se gastaría desplazando manualmente estos cortes. Sin embargo, los investigadores han advertido que el aprendizaje profundo no puede proporcionar la solución completa y que las personas tendrían que trabajar con algoritmos de aprendizaje profundo para alcanzar su potencial.

“La forma en que se integrarán las herramientas de inteligencia artificial en nuestra práctica diaria aún es incierta”, dijo Eskreis-Winkler, MD, quien presentó los datos en el reciente Simposio de Imágenes Mamarias de la Sociedad para Imágenes Mamarias (SBI)/Colegio Americano de Radiología (ACR) . “Así que hay una gran oportunidad para que seamos creativos y proactivos, con el fin de encontrar maneras de aprovechar el poder de la IA para convertirnos en mejores radiólogos y servir mejor a nuestros pacientes”.

Enlace relacionado:
Centro de Cáncer Memorial Sloan Kettering


Miembro Oro
Ultrasound System
FUTUS LE
Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Ultrasound System
Acclarix AX2
Ultrasonic Diagnostic System
K10
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Radcal

Canales

RM

ver canal
Imagen: El MRgFUS puede tratar con éxito el cáncer de próstata para aquellos en riesgo intermedio (Fotografía cortesía de 123RF)

Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata

Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

Imaginología General

ver canal
Imagen: El modelo AI ingresa y analiza una imagen de la tomografía de emisión de positrones (PET) (Fotografía cortesía de la Universidad de Chalmers)

Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC

El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.