Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un software de IA predice las tasas de supervivencia para el cáncer de ovario a partir de los exámenes de TC

Por el equipo editorial de MedImaging en español
Actualizado el 05 Mar 2019
Investigadores del Colegio Imperial de Londres (Londres, Inglaterra) y la Universidad de Melbourne (Melbourne, Australia) han creado un nuevo software de aprendizaje automático que puede pronosticar las tasas de supervivencia y respuesta a los tratamientos de las pacientes con cáncer de ovario. El software de inteligencia artificial (IA) puede predecir el pronóstico de las pacientes con cáncer de ovario con mayor exactitud que los métodos actuales y también puede predecir el tratamiento más eficaz para las pacientes después del diagnóstico.

En su estudio, los investigadores utilizaron una herramienta de software matemático llamada TEXLab para identificar la agresividad de los tumores en las tomografías computarizadas y en las muestras de tejido de 364 mujeres con cáncer de ovario entre 2004 y 2015. El software examinó cuatro características biológicas de los tumores que influyen significativamente en la supervivencia general - estructura, forma, tamaño y composición genética - para evaluar el pronóstico de las pacientes. A las pacientes se les asignó una puntuación conocida como Vector de Pronóstico Radiómico (VPR), que indica qué tan grave es la enfermedad, variando de leve a grave.

Cuando los investigadores compararon los resultados con los análisis de sangre y los puntajes de pronóstico actuales utilizados por los médicos para estimar la supervivencia, encontraron que el software es cuatro veces más exacto para predecir las muertes por cáncer de ovario que los métodos estándar. Los investigadores también encontraron que el 5% de las pacientes con puntuaciones VPR altas tenían una tasa de supervivencia inferior a dos años. Según los investigadores, la tecnología se podría usar para identificar a las pacientes que tienen pocas probabilidades de responder a los tratamientos estándar y ofrecerles tratamientos alternativos. Ahora planean realizar un estudio más amplio para ver con qué exactitud el software puede predecir los resultados de la cirugía y/o las terapias con medicamentos para las pacientes individuales.

“Las tasas de supervivencia a largo plazo para las pacientes con cáncer de ovario avanzado son bajas a pesar de los avances logrados en los tratamientos contra el cáncer. Hay una necesidad urgente de encontrar nuevas formas de tratar la enfermedad”, dijo el profesor, Eric Aboagye, autor principal y profesor de Farmacología del Cáncer e Imagenología Molecular, en el Colegio Imperial de Londres. “Nuestra tecnología es capaz de brindar a los médicos información más detallada y exacta sobre la forma en que los pacientes pueden responder a diferentes tratamientos, lo que podría permitirles tomar decisiones de tratamiento mejores y más específicas”.

“La inteligencia artificial tiene el potencial de transformar la forma en que se brinda la atención médica y mejorar los resultados de las pacientes”, agregó la profesora Andrea Rockall, coautora y radióloga consultora honoraria, en el Servicio de Salud del Colegio Imperial NHS Trust. “Nuestro software es un ejemplo de esto y esperamos que se pueda utilizar como una herramienta para ayudar a los médicos a manejar y tratar mejor a las pacientes con cáncer de ovario”.

Enlace relacionado:
Colegio Imperial de Londres
Universidad de Melbourne



Miembro Oro
Ultrasound System
FUTUS LE
Miembro Oro
Electrode Solution and Skin Prep
Signaspray
PACS Workstation
PaxeraView PRO
Ultrasound System
Acclarix AX2
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Radcal

Canales

RM

ver canal
Imagen: El MRgFUS puede tratar con éxito el cáncer de próstata para aquellos en riesgo intermedio (Fotografía cortesía de 123RF)

Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata

Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

Imaginología General

ver canal
Imagen: El modelo AI ingresa y analiza una imagen de la tomografía de emisión de positrones (PET) (Fotografía cortesía de la Universidad de Chalmers)

Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC

El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.