Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Aprendizaje profundo de radiómica basada en TC predice metástasis en ganglios linfáticos de tumores

Por el equipo editorial de MedImaging en español
Actualizado el 12 Feb 2024
Print article
Imagen: El modelo de IA ha demostrado una tasa de éxito del 89 % en la predicción de metástasis en los ganglios linfáticos (Fotografía cortesía de 123RF)
Imagen: El modelo de IA ha demostrado una tasa de éxito del 89 % en la predicción de metástasis en los ganglios linfáticos (Fotografía cortesía de 123RF)

Los tumores neuroendocrinos de páncreas no funcionales, aunque poco comunes, se tratan principalmente mediante intervención quirúrgica. El proceso de toma de decisiones sobre cirugía y otros tratamientos está fuertemente influenciado por la presencia o ausencia de metástasis en los ganglios linfáticos. Actualmente existe una falta de consenso en las directrices clínicas, especialmente en lo que respecta a la necesidad de cirugía en tumores menores de 2 cm. El diagnóstico preoperatorio de metástasis en los ganglios linfáticos mediante los métodos existentes no es suficientemente confiable. Para abordar esto, los investigadores han introducido un modelo de imágenes que combina la radiómica (la extracción de datos de imágenes radiológicas) y el aprendizaje profundo para predecir metástasis preoperatorias en los ganglios linfáticos en estos tumores. Este modelo innovador marca un importante paso adelante en la evaluación no invasiva de metástasis en los ganglios linfáticos, facilitando un diagnóstico más preciso y ayudando a determinar las estrategias de tratamiento más efectivas.

El equipo de la Universidad de Tsukuba (Tsukuba, Japón) desarrolló este modelo predictivo integrando características radiómicas obtenidas de tomografías computarizadas y resonancias magnéticas con técnicas avanzadas de aprendizaje profundo de inteligencia artificial. Sorprendentemente, este modelo mostró una tasa de precisión del 89 % en la predicción de metástasis en los ganglios linfáticos, que aumenta aún más al 91 % cuando se valida con datos de un hospital externo. Notablemente, su rendimiento se mantiene estable independientemente de si el tamaño del tumor es superior o inferior a 2 cm. Por tanto, este modelo sirve como una herramienta vital para predecir metástasis en los ganglios linfáticos, proporcionando a los cirujanos información esencial para seleccionar las intervenciones quirúrgicas y los planes de tratamiento más adecuados. El desarrollo tiene el potencial de mejorar significativamente los resultados de los pacientes en este desafiante campo médico.

Enlaces relacionados:
Universidad de Tsukuba

Miembro Oro
Ultrasound System
FUTUS LE
Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Fetal Doppler
Sonicaid FD1 / FD3
X-Ray System
Leonardo DR mini III

Print article
Radcal

Canales

RM

ver canal
Imagen: El MRgFUS puede tratar con éxito el cáncer de próstata para aquellos en riesgo intermedio (Fotografía cortesía de 123RF)

Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata

Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.