Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de aprendizaje automático combina biomarcadores de metilación del ADN, clínicos y de imágenes para detección temprana del cáncer de pulmón

Por el equipo editorial de MedImaging en español
Actualizado el 22 Aug 2023

El cáncer de pulmón es responsable de un número significativo de muertes relacionadas con el cáncer en todo el mundo. Aunque varios tratamientos, entre ellos la quimioterapia, la inmunoterapia y la cirugía, han progresado, el panorama general para los pacientes con cáncer de pulmón sigue siendo sombrío. Esto se debe principalmente a un diagnóstico tardío, a menudo en las etapas III o IV, cuando la tasa de supervivencia a cinco años cae por debajo del 10 %. La detección temprana en las etapas 0 a II podría reducir significativamente la mortalidad, pero la falta de tecnologías sensibles y síntomas perceptibles en las primeras etapas presenta desafíos sustanciales.

Los biomarcadores de metilación del ácido desoxirribonucleico (ADN) han demostrado potencial para la detección temprana del cáncer de pulmón, ya que indican eventos relacionados con el inicio del tumor. El uso de métodos de secuenciación de próxima generación para identificar patrones de metilación en el ADN tumoral circulante podría permitir la detección no invasiva del cáncer de pulmón. Si bien la tomografía computarizada de baja dosis (TCBD) ha sido eficaz en la detección temprana entre los grupos de alto riesgo, determinar el riesgo de malignidad de los nódulos pulmonares mediante TCBD sigue siendo un desafío. Ahora, los investigadores han desarrollado y validado un modelo combinado de aprendizaje automático que comprende biomarcadores de metilación del ADN extracelular, clínicos y de imágenes que mejora la clasificación de los nódulos pulmonares y permite un diagnóstico más temprano del cáncer de pulmón.

En el nuevo estudio, investigadores de la Universidad Médica de Guangzhou (Guangzhou, China) desarrollaron un modelo combinado de biomarcadores clínicos y de imagen (CIBM) que utiliza algoritmos de aprendizaje automático para diferenciar nódulos pulmonares malignos y benignos. Cuando se integra con PulmoSeek, un modelo de metilación del ADN extracelular preexistente, el modelo CIBM puede identificar nódulos de pequeño tamaño para diagnosticar el cáncer de pulmón en sus etapas iniciales. Para su estudio, los investigadores inscribieron participantes de 18 años o más, con tipos específicos de nódulos pulmonares, en 20 ciudades chinas. Utilizando más de 800 muestras, los investigadores entrenaron el algoritmo de aprendizaje automático del modelo CIBM para distinguir entre tumores benignos y malignos. Luego, este modelo CIBM se integró con PulmoSeek para crear PulmoSeek Plus, un modelo de diagnóstico combinado. Utilizando el análisis de la curva de decisión, el equipo evaluó su aplicación clínica y clasificó los nódulos en grupos de riesgo. El objetivo era evaluar el desempeño y la capacidad de diagnóstico de tres modelos: PulmoSeek, CIBM y PulmoSeek Plus.

Los resultados mostraron que PulmoSeek Plus tiene potencial para  diagnosticar exitosamente la etapa temprana de nódulos pulmonares benignos o malignos. Utilizado junto con TCBD, este modelo podría ser una herramienta poderosa en la evaluación clínica temprana del cáncer de pulmón. La combinación de CIBM con el modelo PulmoSeek aumentó la sensibilidad de la clasificación de nódulos en un 6 % y el valor predictivo negativo en un 24 %. Además, el desempeño del modelo se mantuvo sólido en los diferentes tipos, tamaños y etapas de nódulos pulmonares, con sensibilidades de caracterización para nódulos en etapa temprana y pequeños de 0,98 y 0,99, respectivamente. Particularmente notable fue su sensibilidad de caracterización del 100 % para nódulos subsólidos, que normalmente son difíciles de categorizar utilizando solo TCBD. La creación del modelo PulmoSeek Plus marca un avance significativo en la detección temprana del cáncer de pulmón. Dado que únicamente requiere muestras de sangre e imágenes de tomografía computarizada no invasivas, el modelo ofrece un enfoque eficiente y prometedor que podría cambiar fundamentalmente la forma en que se diagnostica y trata el cáncer de pulmón.

Enlaces relacionados:
Universidad Médica de Guangzhou  

Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Miembro Oro
Ultrasound System
FUTUS LE
Ultrasound System
Acclarix AX2
Miembro Oro
UGPIV Barrier and Securement
UltraDrape II
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Radcal

Canales

RM

ver canal
Imagen: El MRgFUS puede tratar con éxito el cáncer de próstata para aquellos en riesgo intermedio (Fotografía cortesía de 123RF)

Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata

Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.