Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA supera al modelo de riesgo estándar para predecir cáncer de mama

Por el equipo editorial de MedImaging en español
Actualizado el 15 Jun 2023

El riesgo de cáncer de mama en las mujeres generalmente se evalúa utilizando modelos clínicos como el modelo de riesgo del Consorcio de Vigilancia del Cáncer de Mama (BCSC). Este modelo utiliza varios datos de pacientes, incluida la edad, antecedentes familiares de cáncer de mama, antecedentes de parto y densidad mamaria, para producir una puntuación de riesgo. Ahora, un gran estudio de miles de mamografías ha demostrado que los algoritmos de inteligencia artificial (IA) pueden superar este modelo de riesgo clínico estándar para predecir el riesgo de cáncer de mama a cinco años.

En el estudio retrospectivo, los investigadores de Kaiser Permanente Northern California (Oakland, CA, EUA) usaron datos de mamografías 2D de detección negativas (que no indicaban signos visibles de cáncer) realizadas en 2016. De las 324.009 mujeres elegibles examinadas ese año, se seleccionó aleatoriamente un subgrupo de 13.628 mujeres para examinarlas. Además, las 4.584 pacientes a las que se les diagnosticó cáncer dentro de los cinco años posteriores a su mamografía de 2016 también se incluyeron en el estudio. Todas las mujeres fueron monitoreadas hasta 2021. Los investigadores dividieron la duración del estudio de cinco años en tres marcos de tiempo separados: riesgo de cáncer de intervalo (diagnósticos entre 0 y 1 año), riesgo de cáncer futuro (diagnósticos entre 1 y 5 años) y todo riesgo de cáncer (diagnósticos entre 0 y 5 años).

Se emplearon cinco algoritmos de IA, incluidos dos utilizados por investigadores y tres disponibles comercialmente, para generar puntajes de riesgo de cáncer de mama durante el período de cinco años utilizando las mamografías de detección de 2016. Estos puntajes de riesgo luego se compararon entre sí y con el puntaje de riesgo clínico BCSC. El estudio reveló que los cinco algoritmos de IA superaron al modelo de riesgo BCSC en la predicción del riesgo de cáncer de mama de 0 a 5 años. Algunos algoritmos de IA se destacaron en la identificación de pacientes de alto riesgo de cáncer de intervalo, que a menudo puede ser agresivo y puede requerir una segunda lectura de mamografía, exámenes de detección adicionales o imágenes de seguimiento a intervalos cortos. Por ejemplo, al evaluar a las mujeres con el 10 % más alto de riesgo, la IA predijo hasta el 28 % de los cánceres en comparación con el 21 % que predijo el BCSC. Curiosamente, incluso los algoritmos de IA diseñados para horizontes de tiempo más cortos (tan bajos como 3 meses) podrían predecir hasta cinco años de riesgo futuro de cáncer cuando la mamografía no detectó clínicamente cáncer. Cuando se combinaron los modelos de riesgo de IA y BCSC mejoró aún más la predicción del cáncer.

"Los modelos de riesgo clínico dependen de la recopilación de información de diferentes fuentes, que no siempre está disponible o recopilada", dijo el investigador principal Vignesh A. Arasu, MD, Ph.D., científico investigador y radiólogo en ejercicio en Kaiser Permanente Northern California. "Los avances recientes en el aprendizaje profundo de la IA nos brindan la capacidad de extraer cientos a miles de características mamográficas adicionales".

"Este fuerte desempeño predictivo durante el período de cinco años sugiere que la IA está identificando tanto los cánceres pasados por alto como las características del tejido mamario que ayudan a predecir el desarrollo futuro del cáncer. Algo en las mamografías nos permite rastrear el riesgo de cáncer de mama. Esta es la 'caja negra' de la IA, añadió Arasu.

Enlaces relacionados:
Kaiser Permanente  

Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Miembro Oro
Ultrasound System
FUTUS LE
Mammography Diagnostic Station
Mammo Module
Wireless Flat Panel Detector
ExamVue 10" x 12" Glassless Substrate Wireless
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Radcal

Canales

RM

ver canal
Imagen: El MRgFUS puede tratar con éxito el cáncer de próstata para aquellos en riesgo intermedio (Fotografía cortesía de 123RF)

Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata

Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.