Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA predice riesgo de recurrencia del cáncer de pulmón mediante tomografías computarizadas

Por el equipo editorial de MedImaging en español
Actualizado el 28 Dec 2022

El cáncer de pulmón de células no pequeñas (CPCNP) representa casi cinco sextos (85 %) de los casos de cáncer de pulmón y, cuando se detecta a tiempo, la enfermedad suele ser curable. Sin embargo, más de un tercio (36 %) de los pacientes con CPCNP en el Reino Unido experimentan una reaparición del cáncer, lo que se conoce como recurrencia. Según los últimos resultados de un estudio, la inteligencia artificial (IA) podría ayudar a identificar el riesgo de que el cáncer regrese en pacientes con CPCNP mediante tomografías computarizadas.

La última fase del estudio OCTAPUS-AI dirigido por investigadores de The Royal Marsden NHS Foundation Trust (Londres, Reino Unido) utilizó imágenes y datos clínicos de más de 900 pacientes con CPCNP del Reino Unido y los Países Bajos después de radioterapia curativa para desarrollar y probar algoritmos de aprendizaje automático (ML) para ver con qué precisión los modelos podrían predecir la recurrencia. Se utilizó una medida conocida como “área bajo la curva” (AUC) para expresar la efectividad de esta herramienta. Un AUC de uno significa que el sistema siempre es correcto; 0,5 es el puntaje que esperaría si fuera una suposición aleatoria y cero significa que siempre está equivocado.

Los datos de imágenes se tomaron de las tomografías computarizadas de planificación del tratamiento, que todos los pacientes con CPCNP realizan antes de la radioterapia. Para analizar estos datos, los investigadores utilizaron una técnica llamada radiómica, que puede extraer información de pronóstico sobre la enfermedad del paciente a partir de imágenes médicas que el ojo humano no puede ver. Los datos de esta técnica también pueden vincularse potencialmente con marcadores biológicos. Como resultado, los investigadores creen que la radiómica podría ser una herramienta útil tanto para personalizar la medicina como para mejorar la vigilancia posterior al tratamiento.

Los resultados del estudio revelan que el modelo de los investigadores fue mejor para identificar correctamente qué pacientes con CPCNP tenían un mayor riesgo de recurrencia dentro de los dos años posteriores a la finalización de la radioterapia, que un modelo basado en el sistema de estadificación TNM. Este modelo logró un AUC de 0,738, mejorando la técnica de estadificación TNM tradicional que obtuvo una puntuación de 0,683. TNM, que describe la cantidad y la propagación del cáncer en el cuerpo de un paciente, es actualmente el estándar de oro para predecir el pronóstico de los pacientes con cáncer.

“Si bien se encuentra en una etapa muy temprana, este trabajo sugiere que nuestro modelo podría ser mejor para predecir correctamente el nuevo crecimiento del tumor que los métodos tradicionales. Esto significa que, al usar nuestra tecnología, los médicos pueden eventualmente identificar la recurrencia antes en pacientes de alto riesgo”, dijo el líder del estudio, el Dr. Sumeet Hindocha, registrador especialista en oncología clínica en The Royal Marsden NHS Foundation Trust y miembro de investigación clínica en el Colegio Imperial de Londres. “A continuación, queremos explorar técnicas de aprendizaje automático más avanzadas, como el aprendizaje profundo, para ver si podemos obtener resultados aún mejores. Luego queremos probar este modelo en pacientes con CPCNP recién diagnosticados y seguirlos para ver si el modelo puede predecir con precisión su riesgo de recurrencia”.

Enlaces relacionados:
The Royal Marsden NHS Foundation Trust  

Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Miembro Oro
Ultrasound System
FUTUS LE
Imaging Table
Stille imagiQ2
X-Ray System
Leonardo DR mini III
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Radcal

Canales

RM

ver canal
Imagen: El MRgFUS puede tratar con éxito el cáncer de próstata para aquellos en riesgo intermedio (Fotografía cortesía de 123RF)

Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata

Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.