Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA diagnostica fracturas de muñeca tan bien como radiólogos

Por el equipo editorial de MedImaging en español
Actualizado el 09 Apr 2024

En el campo de las imágenes médicas, la radiografía convencional es el método principal para diagnosticar las fracturas de muñeca. Sin embargo, desafíos como el posicionamiento, la técnica, la cooperación del paciente y los errores de interpretación subóptimos, que a menudo surgen de la inexperiencia del médico, la fatiga o las malas condiciones de visualización, pueden afectar la precisión de estas radiografías. Los errores de interpretación más frecuentes en los departamentos de emergencia (DE) son las fracturas omitidas, lo que provoca retrasos en el tratamiento. Los médicos, en particular aquellos con formación limitada en imágenes musculoesqueléticas, a menudo tienen dificultades para identificar las fracturas de muñeca, especialmente cuando los signos son sutiles. El avance del aprendizaje profundo (DL) en la automatización del diagnóstico de fracturas de muñeca podría ayudar significativamente a los médicos, y los desarrollos recientes han visto mejoras sustanciales en las tasas de error de clasificación de imágenes de los modelos de DL. Ahora, un nuevo metanálisis revela que los algoritmos de inteligencia artificial (IA), especialmente las redes neuronales convolucionales (CNN), son muy eficaces para detectar fracturas de muñeca a partir de rayos X simples y tienen un desempeño a la par de profesionales sanitarios capacitados.

El estudio realizado por investigadores del Hospital Universitario del Sur de Dinamarca (Odense, Dinamarca) implicó analizar varias bases de datos médicas desde enero de 2012 hasta marzo de 2023. El equipo identificó seis estudios que aplicaron IA de aprendizaje profundo para diagnosticar fracturas radiales y cubitales mediante radiografías. Los estudios incluyeron colectivamente 33.026 imágenes de rayos X. Cada estudio empleó modelos de CNN entrenados en un conjunto de datos de imágenes y comparó su precisión diagnóstica con la de expertos sanitarios especializados en diagnóstico de fracturas. El enfoque en las fracturas de muñeca en este metanálisis se debió a su alta tasa de diagnóstico erróneo en los DE, donde su detección mediante rayos X puede ser compleja.

Una revisión exhaustiva de estos estudios indicó que las CNN, comparadas con el consenso de expertos sanitarios, lograron una tasa de sensibilidad del 92 % y una tasa de especificidad del 93 %. Este hallazgo posiciona a las CNN como una herramienta preliminar eficaz para revisar radiografías, lo que potencialmente reduce las fracturas pasadas por alto cuando se realiza un seguimiento mediante un examen de un profesional de la salud. Sin embargo, el estudio reconoce la necesidad de realizar más investigaciones y enfatiza la importancia de las pruebas de conjuntos de datos externos, metodologías uniformes y estándares de referencia de expertos independientes para determinar completamente la efectividad de los algoritmos de diagnóstico de IA. Los estudios futuros también deberían centrarse en los resultados de los pacientes como punto de referencia para comprender el impacto de las CNN en el mundo real en entornos clínicos.

“Para los médicos, la IA podría utilizarse potencialmente para mejorar la confianza en el diagnóstico, especialmente en los campos de la radiología. Los algoritmos de IA pueden resultar especialmente útiles para los médicos menos experimentados”, concluyeron los investigadores.

Enlaces relacionados:
Hospital Universitario del Sur de Dinamarca  

Miembro Oro
Ultrasound System
FUTUS LE
Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Ultrasound System
Acclarix AX2
Fetal Doppler
Sonicaid FD1 / FD3
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Radcal

Canales

RM

ver canal
Imagen: El MRgFUS puede tratar con éxito el cáncer de próstata para aquellos en riesgo intermedio (Fotografía cortesía de 123RF)

Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata

Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

Imaginología General

ver canal
Imagen: El modelo AI ingresa y analiza una imagen de la tomografía de emisión de positrones (PET) (Fotografía cortesía de la Universidad de Chalmers)

Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC

El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.