Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un estudio encuentra que la IA se queda corta al momento de analizar datos médicos

Por el equipo editorial de MedImaging en español
Actualizado el 28 Nov 2018
Un estudio realizado en la Facultad de Medicina Icahn en Monte Sinaí (Nueva York, NY, EUA) descubrió que las herramientas de inteligencia artificial (IA) entrenadas para detectar neumonía en las radiografías de tórax sufrieron una disminución significativa en el desempeño cuando las ensayaron en datos de sistemas de salud externos. Estos hallazgos sugieren que, a menos que la inteligencia artificial en el espacio médico sea probada cuidadosamente con respecto al desempeño en una amplia gama de poblaciones, los modelos de aprendizaje profundo pueden no funcionar con la exactitud que se espera.

En medio del creciente interés en el uso de marcos de sistemas informáticos denominados redes neuronales convolucionales (RNC) para analizar imágenes médicas y proporcionar un diagnóstico asistido por computadora, los estudios recientes han encontrado que la clasificación de imágenes de IA puede no generalizarse a los nuevos datos como se presenta comúnmente. Los investigadores de la Facultad de Medicina Icahn en Monte Sinaí evaluaron cómo los modelos de IA identificaron la neumonía en 158.000 radiografías de tórax en tres instituciones médicas. Eligieron estudiar el diagnóstico de neumonía en las radiografías de tórax debido a su aparición común, importancia clínica y prevalencia en la comunidad de investigación.

Los investigadores descubrieron que, en tres de cada cinco comparaciones, el desempeño de las RNC en el diagnóstico de enfermedades en los rayos X de hospitales fuera de su propia red, fue significativamente menor en comparación con los rayos X del sistema de salud original. Sin embargo, las RNC pudieron detectar el sistema hospitalario donde se adquirió una radiografía con un alto grado de exactitud e hicieron trampa en su tarea predictiva basada en la prevalencia de neumonía en la institución de capacitación. Los investigadores encontraron que el problema clave en el uso de modelos de aprendizaje profundo en medicina es el uso de una gran cantidad de parámetros, lo que dificulta la identificación de variables específicas que determinan las predicciones, como los tipos de escáneres de tomografía computarizada utilizados en un hospital y la calidad de resolución de las imágenes

“Nuestros hallazgos deberían detener a aquellos que piensan en el despliegue rápido de plataformas de IA sin evaluar rigurosamente su desempeño en entornos clínicos reales que reflejen dónde se implementan”, dijo el autor principal, Eric Oermann, MD, Instructor en Neurocirugía en la Facultad de Medicina Icahn en el Monte Sinaí. “Los modelos de aprendizaje profundo entrenados para realizar diagnósticos médicos pueden generalizarse bien, pero esto no puede darse por sentado ya que las poblaciones de pacientes y las técnicas de imagenología difieren significativamente entre las instituciones”.

“Si los sistemas de RNC se van a usar para el diagnóstico médico, se deben adaptar para considerar cuidadosamente las preguntas clínicas, ser probadas en una variedad de escenarios del mundo real y evaluadas cuidadosamente para determinar cómo afectan el diagnóstico exacto”, dijo el primer autor, John Zech, un estudiante de medicina en la Facultad de Medicina Icahn en Monte Sinaí.

Enlace relacionado:
Monte Sinaí


Miembro Oro
Ultrasound System
FUTUS LE
Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Digital X-Ray Detector Panel
Acuity G4
Bladder Scanner
PBSV3.2
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Radcal

Canales

RM

ver canal
Imagen: El MRgFUS puede tratar con éxito el cáncer de próstata para aquellos en riesgo intermedio (Fotografía cortesía de 123RF)

Terapia de ultrasonido enfocado guiada por resonancia magnética se muestra prometedora en tratamiento del cáncer de próstata

Los médicos y radiólogos intervencionistas utilizan la terapia de ultrasonido enfocado guiado por resonancia magnética (MRgFUS) para apuntar con precisión áreas específicas... Más

Ultrasonido

ver canal
Imagen: Estructura del transductor de ultrasonido transparente propuesto y su transmitancia óptica (Fotografía cortesía de POSTECH)

Transductor de ultrasonido transparente de banda ancha ultrasensible mejora diagnóstico médico

El sistema de imágenes de modo dual ultrasonido-fotoacústico combina el contraste de imágenes moleculares con imágenes de ultrasonido. Puede mostrar detalles moleculares y estructurales... Más

Medicina Nuclear

ver canal
Imagen: PET/CT de un paciente masculino de 60 años con sospecha clínica de cáncer de pulmón (Fotografía cortesía de  EJNMMI Physics)

Adquisición temprana de PET FDG dinámica de 30 minutos podría reducir a la mitad tiempos de exploración pulmonar

Las exploraciones PET FDG F-18 son una forma de observar el interior del cuerpo utilizando un tinte especial, y estas exploraciones pueden ser estáticas o dinámicas. Las exploraciones estáticas... Más

Imaginología General

ver canal
Imagen: El modelo AI ingresa y analiza una imagen de la tomografía de emisión de positrones (PET) (Fotografía cortesía de la Universidad de Chalmers)

Modelo de IA detecta 90 % de casos de cáncer linfático a partir de imágenes de PET y TC

El uso de la inteligencia artificial (IA) en el análisis de imágenes médicas ha sido testigo de avances significativos recientemente. Se están desarrollando nuevas herramientas... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.